456 research outputs found

    Facility layout problem: Bibliometric and benchmarking analysis

    Get PDF
    Facility layout problem is related to the location of departments in a facility area, with the aim of determining the most effective configuration. Researches based on different approaches have been published in the last six decades and, to prove the effectiveness of the results obtained, several instances have been developed. This paper presents a general overview on the extant literature on facility layout problems in order to identify the main research trends and propose future research questions. Firstly, in order to give the reader an overview of the literature, a bibliometric analysis is presented. Then, a clusterization of the papers referred to the main instances reported in literature was carried out in order to create a database that can be a useful tool in the benchmarking procedure for researchers that would approach this kind of problems

    Experimental investigation and modelling of diffusion dialysis process for regeneration of acidic pickling solutions

    Get PDF
    Pickling is one of the key steps in metal finishing industries, where HCl solutions are largely used thus generating significant amounts of spent waste solutions containing high concentrations of metals and acid. The recovery of acid from such waste solutions is thus one of the most beneficial steps for reducing the environmental and economical impact of these processes. Among several separation methods, diffusion dialysis (DD) is becoming more and more attractive thanks to the recent important advances in ion exchange membranes (IEMs) field and because of its clean nature and operational simplicity, low installation and operating costs and low energy consumption [1,2]. In the present work, a single-cell diffusion dialysis module equipped with a FumaTech Anion Exchange Membrane (AEM), operated in a batch mode, has been employed in order to study the effect of some parameters on the efficiency of HCl recovery from waste pickling acidic solutions. In addition, a mathematical model, capable of simulate and predict this process, has been also developed and validated with experimental information. The laboratory test-rig and procedures have been first evaluated and optimised by measuring salt and water fluxes with artificial NaCl solutions with different types of AEMs. Then, experiments with HCl solutions were carried out, at different compositions of diffusate and retentate streams, varying HCl concentration values in the range of 0.1-3 M. HCl and water osmotic fluxes were measured and their dependence on operating conditions was identified. Also the effect of the presence of selected iron salts were investigated in order to simulate the operation of the system when treating actual pickling solutions. In particular, the acid diffusion permeability as well as the water osmotic permeability tend to increase when increasing the solution concentration. In addition, an increasing HCl recovery is detected in the presence of iron chloride. References [1] Luo et al., Diffusion dialysis processes of inorganic acids and their salts: the permeability of different acidic anions, Separation and Purification Technology 78 (2011), 97-102 [2] Xu et al., Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis, Journal of Hazardous Materials 165 (2009), 832-83

    Computational Fluid Dynamics of Reacting Flows at Surfaces: Methodologies and Applications

    Get PDF
    This review presents the numerical algorithms and speed-up strategies developed to couple continuum macroscopic simulations and detailed microkinetic models in the context of multiscale approaches to chemical reactions engineering. CFD simulations and hierarchical approaches are discussed both for fixed and fluidized systems. The foundations of the methodologies are reviewed together with specific examples to show the applicability of the methods. These concepts play a pivotal role to enable the first-principles multiscale approach to systems of technological relevance

    Project management information systems (Pmiss): A statistical-based analysis for the evaluation of software packages features

    Get PDF
    Project Managers (PMs) working in competitive markets are finding Project Management Information Systems (PMISs) useful for planning, organizing and controlling projects of varying complexity. A wide variety of PMIS software is available, suitable for projects differing in scope and user needs. This paper identifies the most useful features found in PMISs. An extensive literature review and analysis of commercial software is made to identify the main features of PMISs. After-wards, the list is reduced by a panel of project management experts, and a statistical analysis is performed on data acquired by means of two different surveys. The relative importance of listed features is properly computed, and the interactions between the respondent’s profiles and PMIS features are also investigated by cluster and respondents’ analyses. The paper provides information for researchers and practitioners interested in PMISs packages and their applications. Furthermore, the analyses may help practitioners when choosing a PMIS, and also for developers of PMISs software in understanding user needs

    Economic and Environmental Assessment of Biomass Power Plants in Southern Italy

    Get PDF
    In 2019, Europe adopted the New Green Deal as a strategic plan to become a competitive, resource-efficient, and driven economy by reducing its gas emissions and carbon footprint. Due the COVID-19 pandemic, this strategic plan was recently updated to expedite the green transition of European industries. Therefore, the present paper deals with the problem of deciding an appropriate size for a biomass plant that directly produces electric energy by means of two different conversion processes: combustion and gasification. After an initial estimation of the energy potential in western Sicily, GIS data of biomass growth were used to identify the appropriate size for the power plants under investigation. The economic feasibility of biomass utilization was evaluated over a capacity range of 10 to 30 MW, considering total capital investments, revenues from energy sales, and total operating costs. Moreover, the effect of variations on incentive prices was analyzed by means of a sensitivity analysis. Comparing the different plant solutions considered, the environmental sustainability was also analyzed using the life cycle assessment (LCA) approach. The results showed that the combustion solution had a higher profitability and a lower environmental impact for each plant size. The obtained results also demonstrated that providing power from residual biomass in small agricultural communities would significantly reduce their environmental impacts while improving the economic feasibility of their waste management practices

    Occupational health and safety issues in human-robot collaboration: State of the art and open challenges

    Get PDF
    Human-Robot Collaboration (HRC) refers to the interaction of workers and robots in a shared workspace. Owing to the integration of the industrial automation strengths with the inimitable cognitive capabilities of humans, HRC is paramount to move towards advanced and sustainable production systems. Although the overall safety of collaborative robotics has increased over time, further research efforts are needed to allow humans to operate alongside robots, with awareness and trust. Numerous safety concerns are open, and either new or enhanced technical, procedural and organizational measures have to be investigated to design and implement inherently safe and ergonomic automation solutions, aligning the systems performance and the human safety. Therefore, a bibliometric analysis and a literature review are carried out in the present paper to provide a comprehensive overview of Occupational Health and Safety (OHS) issues in HRC. As a result, the most researched topics and application areas, and the possible future lines of research are identified. Reviewed articles stress the central role played by humans during collaboration, underlining the need to integrate the human factor in the hazard analysis and risk assessment. Human-centered design and cognitive engineering principles also require further investigations to increase the worker acceptance and trust during collaboration. Deepened studies are compulsory in the healthcare sector, to investigate the social and ethical implications of HRC. Whatever the application context is, the implementation of more and more advanced technologies is fundamental to overcome the current HRC safety concerns, designing low-risk HRC systems while ensuring the system productivity

    The first products made in space: Monodisperse latex particles

    Get PDF
    The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles

    Sustainable vehicle routing based on firefly algorithm and TOPSIS methodology

    Get PDF
    In a sustainable management of logistics, transportation plays a crucial role. Traditionally, the main purpose was to solve the Vehicle Routing Problem minimizing the cost associated with the travelled distances. Nowadays, the economic profit cannot be the only driver for achieving sustainability and environmental issues have to be also considered. In this paper, to satisfy the intricate limits involved in real vehicle routing problem, the study has been structured considering different types of vehicles in terms of maximum capacity, velocity and emissions, asymmetric paths, vehicle-client constraints and delivery time windows. The firefly algorithm has been implemented to solve the vehicle routing problem and the TOPSIS technique has been applied to integrate economic and environmental factors. Finally, to prove the effectiveness of the proposed approach, a numerical example has been proposed using data provided by a logistic company located in Sicily

    Selection of novel geopolymeric mortars for sustainable construction applications using fuzzy topsis approach

    Get PDF
    Construction is recognized as one of the most polluting and energy consuming industries worldwide, especially in developing countries. Therefore, Research and Development (R&D) of novel manufacturing technologies and green construction materials is becoming extremely compelling. This study aims at evaluating the reuse of various wastes, originated in the Kraft pulp-paper industry, as raw materials in the manufacture of novel geopolymeric (GP) mortars whose properties fundamentally depend on the target application (e.g., insulating panel, partition wall, structural element, furnishing, etc.). Five different wastes were reused as filler: Two typologies of Biomass Fly Ash, calcareous sludge, grits, and dregs. The produced samples were characterized and a multi criteria analysis, able to take into account not only the engineering properties, but also the environmental and economic aspects, has been implemented. The criteria weights were evaluated using the Delphi methodology. The fuzzy Topsis approach has been used to consider the intrinsic uncertainty related to unconventional materials, as the produced GP-mortars. The computational analysis showed that adding the considered industrial wastes as filler is strongly recommended to improve the performance of materials intended for structural applications in construction. The results revealed that the formulations containing 5 wt.% of calcareous sludge, grits, and dregs and the one containing 7.5 wt.% of calcareous sludge, grits, dregs, and Biomass Fly Ash-1 have emerged as the best alternatives. Furthermore, it resulted that the Biomass Fly Ash-2 negatively influences the structural performance and relative rank of the material. Finally, this case study clearly shows that the fuzzy Topsis multi-criteria analysis represents a valuable and easy tool to investigate construction materials (either traditional and unconventional) when an intrinsic uncertainty is related to the measurement of the quantitative and qualitative characteristics

    Prolonged heavy rainfall and land use drive catchment sediment source dynamics: appraisal using multiple biotracers

    Get PDF
    Excessive sediment loss degrades freshwater quality and is prone to further elevation and variable source contributions due to the combined effect of extreme rainfall and differing land uses. To quantify erosion and sediment source responses across scales, this study integrated work at both field and catchment scale for two hydrologically contrasting winters (2018-19 and 2019-20). Sediment load was estimated at the field scale (grassland-arable conversion system). Sediment source apportionment work was undertaken at the catchment scale (4.5 km2) and used alkanes, and both free and bound fatty acid carbon isotope signatures as diagnostic fingerprints to distinguish sediment sources: arable, pasture, woodland and stream banks. Sediment source apportionment based on bound fatty acids revealed a substantial shift in contributions, from stream banks dominating (70 ± 5%) in winter 2018-19, to arable land dominating (52 ± 7%) in the extreme wet winter 2019-20. Increases in sediment contributions from arable (~3.9 times) and pasture (~2.4 times) land at the catchment outlet during the winter 2019-20 were consistent with elevated sediment losses monitored at the field scale which indicated that low-magnitude high frequency rainfall alone increased sediment loss even from pasture by 350%. In contrast, carbon isotope signatures of alkanes and free fatty acids consistently estimated stream banks as a dominant source (i.e., ~36 % and ~70 % respectively) for both winters regardless of prolonged rainfall in winter 2019-20. Beyond quantifying the shifts in field scale sediment load and catchment scale sediment sources due to the changes in rainfall patterns, our results demonstrate valuable insight into how the fate of biotracers in soil and sediment manifests in the δ13C values of homologues and, in turn, their role in information gain for estimating sediment source contributions. Discrepancies in the estimated sediment source contributions using different biotracers indicate that without a careful appreciation of their biogeochemical limitations, erroneous interpretation of sediment source contributions can undermine management strategies for delivering more sustainable and resilient agriculture
    • …
    corecore